545 research outputs found

    Application of thermodynamics to driven systems

    Full text link
    Application of thermodynamics to driven systems is discussed. As particular examples, simple traffic flow models are considered. On a microscopic level, traffic flow is described by Bando's optimal velocity model in terms of accelerating and decelerating forces. It allows to introduce kinetic, potential, as well as total energy, which is the internal energy of the car system in view of thermodynamics. The latter is not conserved, although it has certain value in any of two possible stationary states corresponding either to fixed point or to limit cycle in the space of headways and velocities. On a mesoscopic level of description, the size n of car cluster is considered as a stochastic variable in master equation. Here n=0 corresponds to the fixed-point solution of the microscopic model, whereas the limit cycle is represented by coexistence of a car cluster with n>0 and free flow phase. The detailed balance holds in a stationary state just like in equilibrium liquid-gas system. It allows to define free energy of the car system and chemical potentials of the coexisting phases, as well as a relaxation to a local or global free energy minimum. In this sense the behaviour of traffic flow can be described by equilibrium thermodynamics. We find, however, that the chemical potential of the cluster phase of traffic flow depends on an outer parameter - the density of cars in the free-flow phase. It allows to distinguish between the traffic flow as a driven system and purely equilibrium systems.Comment: 9 pages, 6 figures. Eur. Phys. J. B (2007) to be publishe

    How to solve Fokker-Planck equation treating mixed eigenvalue spectrum?

    Full text link
    An analogy of the Fokker-Planck equation (FPE) with the Schr\"odinger equation allows us to use quantum mechanics technique to find the analytical solution of the FPE in a number of cases. However, previous studies have been limited to the Schr\"odinger potential with a discrete eigenvalue spectrum. Here, we will show how this approach can be also applied to a mixed eigenvalue spectrum with bounded and free states. We solve the FPE with boundaries located at x=\pm L/2 and take the limit L\rightarrow\infty, considering the examples with constant Schr\"{o}dinger potential and with P\"{o}schl-Teller potential. An oversimplified approach was proposed earlier by M.T. Araujo and E. Drigo Filho. A detailed investigation of the two examples shows that the correct solution, obtained in this paper, is consistent with the expected Fokker-Planck dynamics.Comment: 13 pages, 5 figure

    Space shuttle: Basic supersonic force data for a Grumman delta wing orbiter configuration ROS-NB1

    Get PDF
    Supersonic force data for scale model of space shuttle delta wing orbite

    RECENT FINDINGS CONCERNING AERODYNAMIC EFFECTS IN SKI-JUMPING

    Get PDF
    NI

    Probabilistic Description of Traffic Breakdowns

    Full text link
    We analyze the characteristic features of traffic breakdown. To describe this phenomenon we apply to the probabilistic model regarding the jam emergence as the formation of a large car cluster on highway. In these terms the breakdown occurs through the formation of a certain critical nucleus in the metastable vehicle flow, which enables us to confine ourselves to one cluster model. We assume that, first, the growth of the car cluster is governed by attachment of cars to the cluster whose rate is mainly determined by the mean headway distance between the car in the vehicle flow and, may be, also by the headway distance in the cluster. Second, the cluster dissolution is determined by the car escape from the cluster whose rate depends on the cluster size directly. The latter is justified using the available experimental data for the correlation properties of the synchronized mode. We write the appropriate master equation converted then into the Fokker-Plank equation for the cluster distribution function and analyze the formation of the critical car cluster due to the climb over a certain potential barrier. The further cluster growth irreversibly gives rise to the jam formation. Numerical estimates of the obtained characteristics and the experimental data of the traffic breakdown are compared. In particular, we draw a conclusion that the characteristic intrinsic time scale of the breakdown phenomenon should be about one minute and explain the case why the traffic volume interval inside which traffic breakdown is observed is sufficiently wide.Comment: RevTeX 4, 14 pages, 10 figure

    Zero range model of traffic flow

    Get PDF
    A multi--cluster model of traffic flow is studied, in which the motion of cars is described by a stochastic master equation. Assuming that the escape rate from a cluster depends only on the cluster size, the dynamics of the model is directly mapped to the mathematically well-studied zero-range process. Knowledge of the asymptotic behaviour of the transition rates for large clusters allows us to apply an established criterion for phase separation in one-dimensional driven systems. The distribution over cluster sizes in our zero-range model is given by a one--step master equation in one dimension. It provides an approximate mean--field dynamics, which, however, leads to the exact stationary state. Based on this equation, we have calculated the critical density at which phase separation takes place. We have shown that within a certain range of densities above the critical value a metastable homogeneous state exists before coarsening sets in. Within this approach we have estimated the critical cluster size and the mean nucleation time for a condensate in a large system. The metastablity in the zero-range process is reflected in a metastable branch of the fundamental flux--density diagram of traffic flow. Our work thus provides a possible analytical description of traffic jam formation as well as important insight into condensation in the zero-range process.Comment: 10 pages, 13 figures, small changes are made according to finally accepted version for publication in Phys. Rev.

    Equilibrium distributions in thermodynamical traffic gas

    Full text link
    We derive the exact formula for thermal-equilibrium spacing distribution of one-dimensional particle gas with repulsive potential V(r)=r^(-a) (a>0) depending on the distance r between the neighboring particles. The calculated distribution (for a=1) is successfully compared with the highway-traffic clearance distributions, which provides a detailed view of changes in microscopical structure of traffic sample depending on traffic density. In addition to that, the observed correspondence is a strong support of studies applying the equilibrium statistical physics to traffic modelling.Comment: 5 pages, 6 figures, changed content, added reference

    Long-lived states of oscillator chain with dynamical traps

    Full text link
    A simple model of oscillator chain with dynamical traps and additive white noise is considered. Its dynamics was studied numerically. As demonstrated, when the trap effect is pronounced nonequilibrium phase transitions of a new type arise. Locally they manifest themselves via distortion of the particle arrangement symmetry. Depending on the system parameters the particle arrangement is characterized by the corresponding distributions taking either a bimodal form, or twoscale one, or unimodal onescale form which, however, deviates substantially from the Gaussian distribution. The individual particle velocities exhibit also a number of anomalies, in particular, their distribution can be extremely wide or take a quasi-cusp form. A large number of different cooperative structures and superstructures made of these formations are found in the visualized time patterns. Their evolution is, in some sense, independent of the individual particle dynamics, enabling us to regard them as dynamical phases.Comment: 8 pages, 5 figurs, TeX style of European Physical Journa

    Spring-block model for a single-lane highway traffic

    Full text link
    A simple one-dimensional spring-block chain with asymmetric interactions is considered to model an idealized single-lane highway traffic. The main elements of the system are blocks (modeling cars), springs with unidirectional interactions (modeling distance keeping interactions between neighbors), static and kinetic friction (modeling inertia of drivers and cars) and spatiotemporal disorder in the values of these friction forces (modeling differences in the driving attitudes). The traveling chain of cars correspond to the dragged spring-block system. Our statistical analysis for the spring-block chain predicts a non-trivial and rich complex behavior. As a function of the disorder level in the system a dynamic phase-transition is observed. For low disorder levels uncorrelated slidings of blocks are revealed while for high disorder levels correlated avalanches dominates.Comment: 6 pages, 7 figure

    Relationship between a Non-Markovian Process and Fokker-Planck Equation

    Full text link
    We demonstrate the equivalence of a non-Markovian evolution equation with a linear memory-coupling and a Fokker-Planck equation (FPE). In case the feedback term offers a direct and permanent coupling of the current probability density to an initial distribution, the corresponding FPE offers a non-trivial drift term depending itself on the diffusion parameter. As the consequence the deterministic part of the underlying Langevin equation is likewise determined by the noise strength of the stochastic part. This memory induced stochastic behavior is discussed for different, but representative initial distributions. The analytical calculations are supported by numerical results. © 2006 Elsevier B.V. All rights reserved.The authors (S.T. and K.Z.) acknowledge support by the DFG (SFB 418) as well as by DAAD (S. Tatur)
    corecore